全日制輔導(dǎo)班_高考補(bǔ)習(xí)班
全面監(jiān)管學(xué)生學(xué)習(xí)情況
學(xué)習(xí)教練全程管理,全面監(jiān)控學(xué)生學(xué)習(xí)生活情況,班主任定期與孩子溝通學(xué)習(xí)情況,學(xué)管幫助解決孩子生活中的煩惱。
全面監(jiān)管學(xué)生學(xué)習(xí)情況
學(xué)習(xí)教練全程管理,全面監(jiān)控學(xué)生學(xué)習(xí)生活情況,班主任定期與孩子溝通學(xué)習(xí)情況,學(xué)管幫助解決孩子生活中的煩惱。
名校規(guī)劃向目標(biāo)靠攏
根據(jù)學(xué)生目標(biāo)院校制定教學(xué)方向,階段性教學(xué)提升計(jì)劃,每周小測(cè)、每月大測(cè),分析總結(jié)學(xué)習(xí)經(jīng)驗(yàn),規(guī)劃下階段學(xué)習(xí)計(jì)劃。
戴氏高考文化課補(bǔ)習(xí)培訓(xùn)班高三沖刺班短期集訓(xùn)提升教學(xué) 1v1補(bǔ)習(xí)培訓(xùn),查漏補(bǔ)缺提升基礎(chǔ)知識(shí)點(diǎn),培養(yǎng)學(xué)科學(xué)習(xí)能力,加強(qiáng)教材研讀和理解戴氏高考補(bǔ)習(xí)針對(duì)教材、教法和高考的研究,總結(jié)經(jīng)驗(yàn)教訓(xùn),加強(qiáng)對(duì)學(xué)生的學(xué)習(xí)加強(qiáng),做好第一輪的復(fù)習(xí),為二輪復(fù)習(xí)打好基礎(chǔ)。 小班教學(xué),根據(jù)學(xué)生基礎(chǔ)知識(shí)分班教學(xué),老師能全面監(jiān)管到每一位學(xué)員,幫助每一位學(xué)員有效規(guī)劃學(xué)習(xí)時(shí)間和計(jì)劃,充分時(shí)間解決每一位學(xué)員的疑問難點(diǎn),當(dāng)天的問題絕不拖到第二天解決。 入學(xué)水平評(píng)測(cè),針對(duì)每一位學(xué)員弱項(xiàng)科目做輔導(dǎo)教學(xué)計(jì)劃,每一個(gè)補(bǔ)習(xí)班分配一個(gè)班主任、一個(gè)教學(xué)助理,定期與家長(zhǎng)溝通孩子學(xué)習(xí)和生活情況,讓家長(zhǎng)放心把孩子交到我們手中。我們也會(huì)把一個(gè)更完美的孩子交還到你手里。
I.定義與定義表達(dá)式
一般地,自變量x和因變量y之間存在如下關(guān)系:
y=ax^2+bx+c
?。╝,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時(shí),開口方向向上,a<0時(shí),開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)
則稱y為x的二次函數(shù)。
二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。
II.二次函數(shù)的三種表達(dá)式
一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)
頂點(diǎn)式:y=a(x-h)^2+k[拋物線的頂點(diǎn)P(h,k)]
交點(diǎn)式:y=a(x-x?)(x-x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線]
注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:
h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a
III.二次函數(shù)的圖像
在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,
可以看出,二次函數(shù)的圖像是一條拋物線。
IV.拋物線的性質(zhì)
1.拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線
x=-b/2a。
對(duì)稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)P。
特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)
2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為
P(-b/2a,(4ac-b^2)/4a)
當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2-4ac=0時(shí),P在x軸上。
3.二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。
當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口。
|a|越大,則拋物線的開口越小。
4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。
當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;
當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右。
5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。
拋物線與y軸交于(0,c)
6.拋物線與x軸交點(diǎn)個(gè)數(shù)
Δ=b^2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。
Δ=b^2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。
Δ=b^2-4ac<0時(shí),拋物線與x軸沒有交點(diǎn)。X的取值是虛數(shù)(x=-b±√b^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)
V.二次函數(shù)與一元二次方程
特別地,二次函數(shù)(以下稱函數(shù))y=ax^2+bx+c,
當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),
即ax^2+bx+c=0
一、定義與定義式:
規(guī)劃學(xué)習(xí)計(jì)劃 定期測(cè)試
規(guī)劃學(xué)習(xí)計(jì)劃 定期測(cè)試
入學(xué)開始制定階段性學(xué)習(xí)計(jì)劃,定期測(cè)評(píng)孩子成績(jī)提升,及時(shí)找出學(xué)習(xí)問題并解決,幫助學(xué)生階段性地樹立信心,逐步實(shí)現(xiàn)入學(xué)定下的目標(biāo)
入學(xué)開始制定階段性學(xué)習(xí)計(jì)劃,定期測(cè)評(píng)孩子成績(jī)提升,及時(shí)找出學(xué)習(xí)問題并解決,幫助學(xué)生階段性地樹立信心,逐步實(shí)現(xiàn)入學(xué)定下的目標(biāo)
專業(yè)高考測(cè)試模擬
戴氏多年教學(xué)經(jīng)驗(yàn),預(yù)測(cè)高考出題方向,研發(fā)多套高考測(cè)試題,讓孩子能全面解除高考多種題型。
全面監(jiān)管學(xué)生學(xué)習(xí)情況
學(xué)習(xí)教練全程管理,全面監(jiān)控學(xué)生學(xué)習(xí)生活情況,班主任定期與孩子溝通學(xué)習(xí)情況,學(xué)管幫助解決孩子生活中的煩惱。
此時(shí),函數(shù)圖像與x軸有無交點(diǎn)即方程有無實(shí)數(shù)根。
函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。
1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點(diǎn)坐標(biāo)及對(duì)稱軸如下表:
解析式
頂點(diǎn)坐標(biāo)
對(duì)稱軸
y=ax^2
(0,0)
x=0
y=a(x-h)^2
(h,0)
x=h
y=a(x-h)^2+k
(h,k)
x=h
y=ax^2+bx+c
(-b/2a,[4ac-b^2]/4a)
x=-b/2a
當(dāng)h>0時(shí),y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動(dòng)h個(gè)單位得到,
當(dāng)h<0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到.
當(dāng)h>0,k>0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(x-h)^2+k的圖象;
當(dāng)h>0,k<0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;
當(dāng)h<0,k>0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;
當(dāng)h<0,k<0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;
因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.
2.拋物線y=ax^2+bx+c(a≠0)的圖象:當(dāng)a>0時(shí),開口向上,當(dāng)a<0時(shí)開口向下,對(duì)稱軸是直線x=-b/2a,頂點(diǎn)坐標(biāo)是(-b/2a,[4ac-b^2]/4a).
3.拋物線y=ax^2+bx+c(a≠0),若a>0,當(dāng)x≤-b/2a時(shí),y隨x的增大而減小;當(dāng)x≥-b/2a時(shí),y隨x的增大而增大.若a<0,當(dāng)x≤-b/2a時(shí),y隨x的增大而增大;當(dāng)x≥-b/2a時(shí),y隨x的增大而減?。?/p>
4.拋物線y=ax^2+bx+c的圖象與坐標(biāo)軸的交點(diǎn):
(1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);
(2)當(dāng)△=b^2-4ac>0,圖象與x軸交于兩點(diǎn)A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的兩根.這兩點(diǎn)間的距離AB=|x?-x?|
當(dāng)△=0.圖象與x軸只有一個(gè)交點(diǎn);
當(dāng)△<0.圖象與x軸沒有交點(diǎn).當(dāng)a>0時(shí),圖象落在x軸的上方,x為任何實(shí)數(shù)時(shí),都有y>0;當(dāng)a<0時(shí),圖象落在x軸的下方,x為任何實(shí)數(shù)時(shí),都有y<0.
5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當(dāng)x=-b/2a時(shí),y最小(大)值=(4ac-b^2)/4a.
頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值.
6.用待定系數(shù)法求二次函數(shù)的解析式
(1)當(dāng)題給條件為已知圖象經(jīng)過三個(gè)已知點(diǎn)或已知x、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般形式:
y=ax^2+bx+c(a≠0).
(2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(x-h)^2+k(a≠0).
戴氏高考文化課補(bǔ)習(xí)咨詢熱線028-66005882